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The residual stress distribution in polycrystalline ceramics with thermal expansion
anisotropy and misfitting intragranular dispersion is studied through micromechanical
simulation. The effective grain boundary strength under remote tension is derived from the
stability of a grain-boundary microcrack with thermal elastic residual stresses. This result is
then applied to the strength and fracture properties of a two-phase nanocomposite (5 vol%
SiC-Al2O3). The residual stresses from misfitting dispersion increase the effective grain
boundary strength of the nanocomposite from 1.5 to 5 times more than that of the
single-phase polycrystal, depending on the grain size of the matrix phase. The residual
stresses reduce the instability range of microcrack precursors at grain junctions and
increase the initial level of driving force for critical microcrack extension. Predicted
strengthening of grain boundaries leads, in turn, to the superior inert strength of unnotched
nanocomposite. C© 2000 Kluwer Academic Publishers

1. Introduction
Improvements in the mechanical properties of ad-
vanced ceramics achieved in the past decade have been
properly analyzed and evaluated from the point of
toughening. The experimental data for nanocompos-
ites [1] have demonstrated, however, that the higher in-
ert strength is attained by the rather modest toughness.
Since the conventional fracture mechanics approach
failed in providing an adequate explanation to this be-
havior, extensive research attention has been recently
attracted to this issue [2–12].

The addition of a misfitting particulate phase is not
a new concept for toughening. It operates through
the crack-face bridging, crack deflection or bowing,
along with the microcrack-related energy dissipation,
etc. However, very high levels of strengthening have
never been reported for brittle particulate composites by
this approach. The conventional microstructural design
for toughening two-phase composites has mainly been
made through increasing the volume fraction and size of
reinforcement [13], clearly contradicting the concept of
nanocomposite, where the dispersion is fine and its vol-
ume fraction is low [5]. Several mechanisms have been
proposed for the enhanced inert strength and the creep
resistance of nanocomposites; these include thermal

residual stresses, change in grain boundary morphol-
ogy, dislocation activity, enhanced interfacial fracture
energy, etc. (see review paper [14]). The present study
addresses the analysis of the most evident but still not
fully understood mechanism of strengthening, namely,
the thermal residual stresses in a SiC-Al2O3 nanocom-
posite.

Thermal residual stresses in two-phase nanocompos-
ites have been examined by model calculations and ex-
perimental measurements [3, 4, 6, 9–11]. The analytical
estimates are based, as a rule, on the concept of a mean
residual stress field in matrix, as proposed by Mori and
Tanaka [15]. This analysis smears local stress varia-
tions over a representative volume. In consequence, the
mean stress is tensile in matrix for inflated dispersion
and compressive for deflated one. The residual stresses
observed in nanocomposites have also been limited to
the averaged ones [3, 9, 10]. The experimental tech-
niques available are accurate enough for discerning the
uniform stress state inside the particulate phase, but
obviously insufficient for resolving local stress concen-
trations, the most important factor for controlling the
microfracture.

The influence of residual stresses on fracture tough-
ness of two-phase composite was estimated by Cutler
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and Virkar [16] for WC-Co alloys. Similar approach
was made by Tayaet al. [17] for TiB2-SiC composite
and by Levinet al. [4] for SiC-Al2O3 nanocompos-
ite. The local stress distribution was neglected in these
models, and the macroscopic toughness increment in
a periodic residual stress field was calculated in the
one-dimensional stress intensity formula for uniformly
distributed tractions applied to the crack faces.

It is clear that the residual stress simulations and its
measurements have been exclusively aimed at the influ-
ence of mean microstress on macro-toughness, while
the micromechanical details have been unexplored.
Levin et al. [4] pointed out a possible interaction
of thermoelastic microstresses of a parent polycrys-
tal (matrix) with the misfitting stresses of disper-
sion. Pezzottiet al. [9] addressed a possible hindering
of grain boundary microcracks by localized stresses.
Hoffman and R¨odel [10] compared different exper-
imental observations and concluded the local resid-
ual stresses to be responsible for the strengthening of
nanocomposites. Chimaniet al.[18] reported a method
for reducing residual stress singularities at structural
bimaterial junctions by introducing a misfitting rein-
forcement with a characteristic diameter close to that
of the influencing region of the singular stress. This re-
sult suggests what happen on the microstructural level
inside the matrix grain “reinforced” by misfitting nano-
dispersion.

The present study is directed to a micromechanical
simulation for a model nanocomposite, a brittle non-
cubic polycrystal reinforced by misfitting intragranular
dispersion. The grain boundary is supposed to be the
weakest link in the parent single-phase non-cubic poly-
crystal. The influence of misfitting intragranular disper-
sion on the extension of a grain boundary microcrack
will be examined to understand the unnotch strength of
the model nanocomposite∗.

2. Fracture mechanics modeling
A micromechanical simulation is performed through fi-
nite element analysis for a model particulate nanocom-
posite. This allows taking into account both the
inclusion-matrix thermal expansion misfit and the ther-
mal expansion anisotropy (TEA) of matrix grains. The
extension stability of a grain-boundary microcrack un-
der applied and residual stresses is determined from
an energy criterion for microcrack extension. A gen-
eral criterion for crack extension stability under com-
bined remote and residual stresses is considered, and
then the strengthening of model nanocomposites is
discussed.

2.1. Coupled effect of residual thermal
stresses and applied remote load
on crack extension stability

The combined action of residual stress and the ap-
plied load on crack propagation has been commonly

∗ The scope of the present model is limited to the nanocomposites con-
taining mainly intragranular inclusions. The results of simulation, thus,
may not be applicable to the cases where inclusions are occluded on the
grain boundaries, where, obviously, other strengthening mechanisms
are in effect.

characterized by adding their stress intensity factors
[19]. However, this approach fails whenever the crack
faces keep contact, where the stress intensity becomes
negative. This difficulty may be overcome by utilizing
an alternative approach; the general energy approach
by Eshelby [20].

When an elastic body containing a crack is under
the action of residual thermal stresses and an applied
remote displacement, the total energy is written by

Utot = U (1)
tot +U (2)

tot +Uint (1)

whereUr is the residual strain energy resulting from the
thermal distortion in the absence of external loading,Ua
the strain energy for applied loading in the absence of
residual distortions, andUi the interaction energy [20].
Supposesi j andti j are the elastic strain and stress ten-
sors for the residual field, andεi j , σi j are the elastic
strain and stress tensors for the applied load, respec-
tively. The elastic strain energies of (1) are, then, ex-
pressed by

Uel
tot =

1

2

∫
V

ti j si j dV −
∫

S
pi ui dS= −1

2

∫
V

ti j si j dV

(2a)

Ua = 1

2

∫
V
σi j εi j dV, (2b)

while the interaction energy is defined by

Ui =
∫

V
ti j εi j dV

(
≡
∫

V
σi j si j dV

)
(3)

The strain energy release rate during crack extension is
defined by

Fel
I (s) = −∂U

el
tot

∂s
; (4)

whereξ is the dimensionless crack length. The general
condition for equilibrium cracking is given by

G(ξ ) ≡ Gr(ξ )+ Ga(ξ )+ Gi (ξ ) = 20 (5)

in terms of the fracture energy0. In (5), Gr, Ga, and
Gi are the respective components of residual, applied
and interaction strain energy release rates calculated
by (1) and (4).0 is assumed to be constant for elastic
brittle materials. From the energy conservation law in
the equilibrium condition, the strain energy release rates
Gr andGa, are confirmed to be always non-negative,
while Gi is either positive or negative. Rewriting (5)
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defines the critical driving force,R(ξ ), for the crack of
lengthξ in equilibrium;

R(ξ ) ≡ Ga(ξ ) = 20 − Gi (ξ )− Gr(ξ ) (6)

The critical driving forceR(ξ ) is often referred to as
the R-curve. If a residual distortion is absent or has
been relieved,Ga is equal to 20, and (6) reduces to the
criterion for brittle fracture. It is worthy of note in (6)
with a negative interaction energyGi that the presence
of residual stresses can increase the driving forceR(ξ )
relative to the fracture energy 20, leading to toughening
the material.

2.2. Model for grain-boundary
microcracking in nanocomposite

The problem of microcracking in brittle materials has
been extensively studied by the use of micromechani-
cal fracture models [21–29]. Past applications mostly
have been linked to the theoretical prediction of spon-
taneous microcracking in non-cubic polycrystals and
particulate composites.

A modified model, originally proposed by Clarke
[23], is employed in the present calculations. This
model consists of a symmetric array of foursquare
grains with anisotropic thermal expansion. They are
embedded in an isotropic matrix with averaged thermal
expansion (Fig. 1). The arrows in Fig. 1 indicate the di-
rections of principal thermal deformations during cool-
ing down the model array. This orientation of grains,
representing the case of symmetric tilt boundaries, en-
forces the microcrack initiation at the four-grain junc-
tion. The isotropic polycrystalline matrix, the dimen-
sions of the outer boundaries being supposed infinite,
constrains the grain ensemble. Only 1/4 of the model
was numerically analyzed due to the symmetry. The di-
mensions of the numerical model are shown in Fig. 2.
Since the most residual strain energy is concentrated in
the close vicinity of the grains, the isotropic matrix was
terminated in its dimension atx = 5D in the present
numerical model. In subsequent simulations, this model
(Fig. 2A) represents a single-phase polycrystal, being
referred to as M0.

Figure 1 A model of grain-boundary microcracking due to thermal ex-
pansion anisotropy (Clarke, 1980). The arrows indicate the principal
thermal deformations of grains, the grayed area represents an isotropi-
cally smeared polycrystal.

Figure 2 (A) One-quarter solid model used in the numerical simulations
of a grain-boundary microcrack, the half-length of which is denoted by
c (the grain model M0 is shown). The boundary conditions of symmetry
are imposed on the sidesx= 0 andy= 0. The sidex= 5D is free and
a uniform tensionu∞ is applied on the side aty= 5D. (B) The model
M0, and the models M1, M4 and M9 withf0= 0.05.

For two-phase composites with misfitting intragran-
ular inclusions, the model M0 is modified by adding a
regular array of circular inclusions. The model compos-
ites with various sizes of inclusion were investigated by
keeping the volume fractionf0 of the dispersion con-
stant. This volume fraction in two-dimensional com-
posite models is defined as the ratio of the total area of
inclusions and that of grains. Accordingly, the diame-
ter,d, of the inclusion, as shown in Fig. 2B, obviously
depends on the number of inclusions per grain in the
following manner;

d = D

n

2√
π

√
f0 (7)
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TABLE I Thermoelastic properties of the model composite

Maximum Minimum
thermal thermal

Elstic expansion expansion
modulus, Poisson’s coefficient, coefficient,

Phase GPa ratio ×10−6/◦C ×10−6/◦C

Dispersion (SiC) 400 0.24 4.45 4.45
Matrix grain 350 0.23 9.5 8.6

(Al2O3)
Matrix average 350 0.23 9.05 9.05

(Al2O3)

whereD is the grain size andn is the number of inclu-
sions along the axisx (or y) in the array to make the
total number of inclusions per grain ofn2. The compos-
ite models withn= 1, 2, and 3 referred to asMn2, that
is, M1, M4, M9, are shown in Fig. 2B. Thus, the focus is
on the influence of average size of the dispersion of con-
stant volume fraction, while possible scatter in size of
individual inclusions is neglected. Some material prop-
erties used for the present thermoelastic analyses are
listed in Table I.

The strain energy release rates of (5) are rewritten as
follows for the model shown in Fig. 2:

Gr(ξ ) = Dgr(ξ ) (8)

Ga(ξ ) = Dσ 2
a ga(ξ ) (9)

Gi (ξ ) = Dσagi (ξ ) (10)

whereξ = c/D is the relative grain-boundary micro-
crack length,σa is the critical nominal stress induced
by the critical applied remote displacement,u∞, (see
Fig. 2A) and approximated to be

σa ≈ Êu∞
5D

(11)

where Ê is the mean Young’s modulus of the com-
posite. The dependencies ofGa on (σa)2 and ofGi on
σa directly follow from (2b) and (3), respectively. In
(8)–(10),gr, ga andgi are the respective strain energy
release rates normalized byD andσa. These functions,
which depend on the geometry of the model, are cal-
culated numerically. The substitution of (8)–(10) into
(5) gives the following equation for the grain-boundary
microcrack in a critical state;

ga(ξ )σ 2
a + gi (ξ )σa+ gr(ξ ) = 0gb

D
(12)

where0gb is now the grain-boundary fracture energy.
Solving (12) with respect toσa gives the critical nom-
inal stress (the grain boundary strength) for the grain
ensemble. The details of numerical analysis are out-
lined in Appendix.

3. Results and discussion
3.1. Residual stress distribution
The thermal residual stress distributions along the grain
boundary of the single-phase and composite models are
compared in Fig. 3 by normalizing the residual stresses
with the nominal polycrystalline TEA stress,s0;

s0 = E(1+ ν)1α1T (13)

whereE is the Young’s modulus andν the Poisson’s
ratio of the matrix,1T the cool-down interval of ther-
mal stress build-up, and1α is the difference between
the maximum and the minimum thermal expansion co-
efficients of the anisotropic matrix grain (see Table I).

Figure 3 (A) The normalized thermal residual stress along the grain
boundary, and (B) its semi-logarithmic plot in the vicinity of grain junc-
tion. The parameters for logarithmic best fit in−2.5< logx/D< −1.5
are listed in Table II. The nominal thermal stresss0= 378 MPa of Al2O3

was used.
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The cool-down interval1T was simply taken to be
1000◦C. The normal stress distribution for the model
M0 is similar to that previously published [23, 26, 27].
The symmetric tilt boundary in the polycrystal is under
tension near the four-grain junction, where the stresses
are singular, while it is under compression in the region
of aboutx> 0.7D. The addition of 5 vol% (equiva-
lent to f0= 0.05 in (7)) of the second phase disper-
sion with lower thermal expansion (SiC) obviously re-
duces the spatial extent of the tensile region near the
singular point (models M1, M4, or M9). The rest of
grain boundary is under mixed tension-compression,
depending on the number of misfitting inclusions. A
semi-logarithmic plot of stresses in the near-singular
region confirms a logarithmic singularity (Fig. 3B), es-
tablished previously in similar problems (e.g., [22, 23,
27]). The present simulation, naturally, concluded none
of reduction in the singularity via misfitting dispersions
as seen in Fig. 3 and Table II.

The residual strain energy release rate curves,
Gr(ξ ), are shown in Fig. 4 for different models with
D= 10µm. The curve for the single-phase model M0
has a rising (dGr/dξ >0) and a falling (dGr/dξ <0) re-
gions which prescribe unstable and stable microcrack
extensions, respectively. The microcrack length,ξm,
that yields the maximumGr-value, separates the un-
stable (0< c/D<ξm) and stable (ξm< c/D< 1) mi-
crocrack precursors in the cooled-down material. This
curve is similar to the Lange’s [21] generalized strain

TABLE I I Parameters of logarithmic best fit,s/s0= A+ Blg(x/D),
for different models (Fig. 5B)

Model A B

M0 −0.517 −0.282
M1 −0.592 −0.304
M4 −0.542 −0.289
M9 −0.598 −0.306

Figure 4 The thermal strain energy release rate of a grain-boundary
microcrack for the model of single-phase polycrystal (M0) and two-
phase composites with intragranular inclusions (M1, M4, and M9).

TABLE I I I Characteristic parameters for thermally induced
microcracking

Model ξm (see Fig. 4) Dsafe(µm)

M0 0.169 102
M1 0.110 117
M4 0.087 134
M9 0.060 146

energy release rate curve for a microcrack in a localized
residual stress field. In the absence of applied displace-
mentu∞, and henceσa= 0, (12) can be written by

gr(ξ ) = 0gb

D
(14)

and then,

Dsafe= 0gb

gr(ξm)
(15)

where Dsafe is the so-called microcrack-safe grain
size [21]. It indicates the upper limit of grain size below
which no spontaneous microcrack extension is possi-
ble during cooling down irrespective of the precursor
length in non-cubic polycrystal. The model M0 for alu-
mina with0gb= 3 J/m2 givesDsafe= 102µm†.

The addition of misfitting dispersion of 5 vol%
markedly changes the shape of residual strain en-
ergy release rate curve (see the curves M1, M4, and
M9 in Fig. 4). Both the range of extension instabil-
ity, 0< c/D<ξm, and the peak valueGr(ξm) are re-
duced while the respective microcrack-safe grain sizes
increase (see Table III). The misfitting dispersion,
thus, reduces the population of potentially strength-
controlling defects in the composite relative to the
single-phase polycrystal. For rather large size micro-
cracks,c/D> 0.5, the residual strain energy release
rate progressively vanishes, as seen in Fig. 4, since the
misfitting dispersion causes a microcrack closure which
never occurs in the single-phase model.

3.2. The extension stability of a microcrack
under uniaxial tension

The equilibrium microcrack in a residually stressed
material under a remote uniaxial tension, as shown in
Fig. 2, is defined by (12). If a preexisting defect of size
ξ0 falls in the range of 0<ξ0≤ ξm, the solution of (12)
at ξ = ξm, whereξm is the crack length yielding the
first maximum on thegr(ξ ) curve, gives a conservative
estimate for grain-boundary strengthσgb(≡ σa):

σgb =
√

g2
i (ξm)− 4ga(ξm)(gr(ξm)− 0gb/D)− gi (ξm)

2ga(ξm)
(16)

The calculated results for the models with four different
grain sizes are shown in Table IV. The grain-boundary

† Grain-boundary fracture energy is estimated as a half of the fracture
energy of a single crystal [30]
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TABLE IV Grain boundary strength of non-cubic polycrystalline
nanocomposites

Model Grain-boundary strength (MPa)

M0 37.5 223 649 2130
M1 112 297 823 2690
M4 158 342 916 2980
M9 213 424 1110 3610
Grain size,D (µm) 100 50 10 1

Figure 5 The grain-boundary strengthening factor (the ratio of grain
boundary strengths of the composite and the single-phase polycrystal).

strength of all the model polycrystals naturally de-
creases with increasing the grain size. However, the
ratio of strengths of composite and single-phase poly-
crystal is larger for the coarse-grained material than for
the fine-grained one, as shown in Fig. 5. The grain-
boundary is strengthened about 1.5 times in average
in the range from 1µm to 50µm of grain size and
about 5 times for grains close to 100µm in diame-
ter. This grain-size effect implies that the strengthen-
ing via intragranular dispersion is highly enhanced as
the grain-size progressively increases and reaches the
microcrack-safe limit ofDsafe (= 102µm for alumina
matrix).

The grain-boundary strength of the model compos-
ites is examined furthermore in terms of the extension
stability. Fig. 6 demonstrates the microR-curve behav-
iors (6) of the grain-boundary microcrack for the model
materials with two different grain sizes,D, of 10µm
(Fig. 6A) and 100µm (Fig. 6B). The initial crack length
ξ0 for each curve is assumed to equal the value ofξm
of the respective models. Note that theR-curve for the
single-phase model (M0), being always less than 1.0,
i.e., Ga(ξ )<0gb, indicates embrittling the polycrystal
by TEA residual stresses. Misfitting dispersion sup-
presses in part the TEA stresses, which is reflected
by the risingR-curves for all the model composites.
The grain-boundary strengthening is attained by the in-
crement of the critical microcrack driving force and
the decrement of the initial microcrack size,ξ0. The

Figure 6 The normalized microR-curves for the grain size of (A) 10µm,
and, (B) 100µm. The respectiveR-curves initiate atξm, shown in
Table III. Note the difference in the scale of vertical axes of (A) and
(B).

nanodispersion strengthening rises with grain size, as
seen in Fig. 6, through the compensating contribution
of misfitting dispersion against the TEA stress. Obvi-
ously, this strengthening effect of misfitting dispersion
will be enhanced when the TEA stresses are relief via
annealing of nanocomposites.

The positiveR-curve effect, i.e.Ga(ξ )>0gb, for a
grain-boundary microcrack in nanocomposite appears
only after a certain microcrack extension to about a
half of the grain facet, D/2, as seen in Fig. 6. In addi-
tion to this characteristic of importance, the risingR-
curves meander with crack extension, implying, a rather
complicated stable/unstable crack extension. This ex-
tension behavior is seen for all the model composites
except the M1 whith the largest grain size of 100µm
(Fig. 6B). The normalizedR-curve (Ga/0gb) of M1
exceeds 1.0 at the microcrack length which completely
relieves the residual strain energy (see Fig. 4) associated
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Figure 7 Interaction energy release rate curvesGi for a remote uniform
tension (u∞= 0.0143µm) applied on the model composites with the
grain size ofD= 10µm.

with the microcrack closure via misfitting dispersion.
As suggested in (12), the toughening is always at-
tributed to the negative interaction strain energy release
rate. In order to demonstrate this point, the interac-
tion strain energy release rates,Gi (ξ ), are compared
in Fig. 7. As a matter of fact, the negative interaction
energy (or toughening) becomes significant after the
microcrack leaves most of misfitting inclusions “in the
wake”, which is similar to the mechanics of transforma-
tion toughening [31]. It should be noted, however, that
in real nanocomposites the fracture process, in view
of enhanced stability of the grain-boundary microc-
racks, in most cases would rather switch to transgran-
ular mode.

4. Conclusions
The modification of residual microstresses by the ad-
dition of misfitting dispersion of intragranular size to a
non-cubic polycrystal has been examined as a candidate
for possible strengthening mechanism of nanocompos-
ites. The “toughening” through residual distortion has
been properly analyzed via the interaction energy. The
following conclusions are drawn from the model com-
posites with misfitting (inflated) intragranular inclu-
sions in a non-cubic polycrystal simulating a prototype
material of 5 vol% SiC-alumina nanocomposite:

1. Second-phase misfitting intragranular dispersion
increases the resistance to microcracking in non-cubic
polycrystals with thermal expansion anisotropy via
the reduction of both the spatial extent of microcrack
instability at grain junction and the maximum resid-
ual strain energy release rate. This in turn limits the
population of microcrack precursors and increases the
microcrack-safe grain size.

2. The change in the extension stability of microc-
rack in the residual stress field improves grain boundary
strength. The grain-boundary strengthening by misfit-
ting dispersion is achieved to 1.5 times over the mono-
lithic material for fine-grained and to about five times
for coarse-grained polycrystals. The increase in grain
boundary strength leads, in turn, to the inert strength
enhancement observed for unnotched nanocomposite
specimens and explains the transgranular appearance
of the fracture surface.

3. The favorable influence of nanodispersion on
the grain-boundary strength will be better realized by
weaker anisotropy in the thermal expansion of matrix
polycrystal. The experimentally observed increase in
the inert strength of nanocomposite after annealing may
be resulted from the relief of a part of total thermal
residual stresses, which is attributed to thermal expan-
sion anisotropy.

4. The risingR-curve behavior of grain-boundary
microcrack in the model composites is more pro-
nounced for a deeper microcrack. This resistance curve
leads to toughening the nanocomposite only with
coarse-grained polycrystals. For fine grain sizes, the
nanocomposite, despite the notable increase in the
grain-boundary strength, remains brittle, or even be-
comes more brittle than the parent single-phase poly-
crystal.

Appendix: Details of finite
element calculations
ANSYS‡ Revision 5.2/5.3 finite element software was
used in the calculation. PLANE42 element with plane
strain option has been used in the model. All the bound-
aries between different materials (inclusion-grain and
grain-matrix) were modeled as a double-noded cou-
pled interfaces to prevent averaging of stress and strain
across the boundary. The conditions of general contact
have been introduced along the microcrack faces by
the use of CONTAC48 element. The degree of mesh
refinement utilized near the singular points of the grain
junction and near the microcrack tip was selected in the
range from 1/1440 to 1/2160 of the matrix grain sizeD
for different models (M0–M9).

The elastic strain energies for the residual field and
for the applied loading together with the respective in-
teraction energy were calculated by the numerical inte-
gration of finite element results for elastic stresses and
strains, (2) and (3). The energy release rate has been de-
termined similarly to the virtual crack extension method
of Parks [32]: a core of the finite elements within a fixed
radius around the microcrack tip was shifted to a new
position along the prospective microcrack path and the
strain energy release rate was calculated simply by the
finite differences. The core size of aboutD/50 and the
crack tip shift ofD/1500 were chosen after a careful
investigation of the convergence to ensure the accuracy
of 1% in the strain energy release rate calculations.
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